CENTRAL UNIVERSITY OF HARYANA Term End Examinations January 2023

Programme: M.Sc. Microbiology

Semester : III Session: 2022-23

Course Title: Biofuels and Bioenergy

Course Code: SIAS MB 1 3 06 DCEC 4004

Max. Time: 3 Hours

Max. Marks: 70

Instructions: 1. Question no. 1 has seven parts and students are required to answer any four. Each part carries three and half Marks. 2. Question no. 2 to 5 have three parts and student are required to answer any two parts of each question. Each part carries seven marks.

Q 1. Discuss briefly

(4X3.5=14)

- a) Bioeconomy
- b) Environmental impacts of biofuel production
- c) Biogas
- d) Accessory enzymes
- e) AFEX pretreatment
- f) Factors affecting biomass hydrolysis
- g) Saccharification yield and efficiency

Q 2. (2X7=14)

- a) Explain lignocellulosic biorefinery concept with suitable examples.
 - b) Discuss various types of feedstocks used for bioenergy production with examples.
 - c) Discuss general principles of the carbon cycle, greenhouse effect and global climate change in context of biofuels and bioenergy.

Q3. (2X7=14)

- a) What are the major lignocellulosic biopolymers? Discuss their major structural properties.
- b) Write any two physico-chemical pretreatment methods in detail.
- c) Elaborate pseudolignin formation and its negative impacts on biomass conversion yield.

Q 4. (2X7=14)

- a) Define LPMO. Discuss the functioning and necessity of LPMO in complete conversion of biomass.
- b) Discuss solid state fermentation or submerged fermentation technology for enzyme production.
- c) Discuss the concept of cellulolytic enzyme cocktails and their formulation for achieving higher saccharification yield.

Q 5. (2X7=14)

- a) Discuss Indian National Policy on Biofuels 2018.
- b) Give a detailed account of biohydrogen production or microbial fuel cell (any one).
- c) What is LCA? Discuss LCA in the context of biofuels.

Term End Examinations January 2023

Programme: Semester:

Course Title:

M.Sc. Microbiology

Plant Pathology

Course Code: SIAL MB 1 3 05 DCEC 4004

Session: 2022-23 Max. Time: 3 Hours Max. Marks: 70

Instructions:

- 1. Question no. 1 has seven parts and students are required to answer any four. Each part carries three
- 2. Question no. 2 to 5 have three parts and students are required to answer any two parts of each question. Each part carries seven marks.

Q 1.

(4X3.5=14)

- a) Role of preexisting physical barriers in protecting plant's against pathogens
- b) Differentiate between sign and symptom
- c) Disease cycle of yellow rust of wheat
- d) Role of growth hormones in disease development
- e) Differentiate between PTI and ETI
- f) Physical methods of controlling diseases
- g) Role of oxidative bursts in plant defense

Q 2.

(2X7=14)

- a) Discuss in detail about Irish Potato Famine and Great Bengal Famine including the disease
- b) What are the effects of pathogen attacks on host physiology?
- c) Write down about different animate and inanimate causes of diseases along with 2 examples of diseases for each?

Q3.

(2X7=14)

- a) Classify diseases based on scale & severity and the number of generations with examples
- b) Discuss necrosis symptoms in detail.
- c) Discuss different events in the disease cycle with examples?

Q4.

(2X7=14)

- a) Define toxin. Classify toxins based on their role in pathogenesis. Give 2 examples for each type of toxin along with producing pathogen.
- b) Hydrolytic enzymes are the major weapon of rot-causing pathogens. Justify the statement.
- c) Discuss the role of PR proteins and phytoalexins in protecting plants from diseases.

Q 5.

- a) Define biocontrol. Discuss biocontrol mechanisms of disease control by Trichoderma and its mass production.
- b) What are the six principles of plant disease management? Explain with examples
- c) Define plant disease resistance. What are different types of resistance based on the number of genes involved. Briefly describe ISR and SAR also.

The state of the s

COLUMN CO

Tall river

Term End Examinations, January 2023

Programme : M.Sc. Microbiology

Semester : III

Session: 2022-23

Max. Time: 3 Hours

Course Title : Industrial Microbiology

Max.Marks : **70**

Course Code : SIAS MB 1 3 03 C4004

Instructions:

1. There are total five questions in this paper. All questions are compulsory and carry 14 Marks each.

2. Question no. 1 has seven sub parts and students need to answer any four.

3. Question no. 2 to 5 have three sub parts and students need to answer any two sub parts of each question.

4. Draw diagrams wherever necessary and provide suitable examples.

Question No1.

(4X3.5=14)

- a. Differentiate between screening and enrichment of cultures.
- b. Write a note on solid state reactors.
- c. Give four examples each of primary and secondary metabolites and microbes involved.
- d. Write short note on 'SCP'.
- e. Explain scale-up and scale down process in fermentation.
- f. Write short note on 'airlift fermentor'
- g. Write a note on media sterilization in continuous fermentations.

Question No2.

(2X7=14)

- **a.** Discuss methods of long term preservation and maintenance of microbial cultures giving details about principles or procedures involved.
- b. Discuss role of industrial microbiologist.
- c. Differentiate between solid state and submerged fermentations.

Question No3.

(2X7=14)

- a. Discuss fermentation kinetics of fed batch and continuous fermentations giving mathematical expressions.
- **b.** Write a note on inoculum development for fermentation.

c. What are the various constituents of fermentation media? Write a note on various carbon and nitrogen sources used at industrial level.

Question No4. (2X7=14)

- a. Describe in detail the steps involved in downstream processing.
- **b.** Explain various types of bioreactors with suitable diagrams, applications, advantages and disadvantages.
- c. Write a detail note on various components of a fermenter.

Question No5. (2X7=14)

- **a.** Name the microorganism commonly used in the brewing process? What are different types of beer? Discuss beer fermentation.
- **b.** Give an elaborated account of fermentative production of antibiotics using suitable examples.
- c. Discuss various methods of microbial strain improvement using rDNA technology and metabolic engineering.

Term End Examinations January 2023

Programme: M.Sc.

Session: 2022-23

Semester:

III

Max. Time: 3 Hours

Course Title: Biostatistics and Bioinformatics

Max. Marks: 70

Course Code: SIAS MB 1 3 01 C 3003

Instructions:

1. Question no. 1 has seven parts and students need to answer any four. Each part carries three and half Marks.

2. Question no. 2 to 5 have three parts and student need to answer any two parts of each question. Each part carries seven marks.

Q 1.

(4X3.5=14)

- a) Questionnaire
- b) Significance of replications in an experiment
- c) Dependent and independent variables
- d) ORF
- e) NCBI
- f) Languages used in bioinformatics
- g) NGS

Q 2.

(2X7=14)

- a) Explain the different measures of central tendency and dispersion with merit and demerits of each
- b) What do you understand by Data? What are the different methods of data collection in biological sciences?
- c) What do you understand by the term probability? Give at least two biological examples. Also explain the theory of addition and multiplication to determine the probability

Q3.

(2X7=14)

- a) What do you understand by one-way ANOVA and two-way ANOVA? Explain both with the hypothesis
- b) Which are the different statistical tests used to interpret the biological data. Explain
- c) Explain in brief (any two): Tests of Significance, Probability distribution.

Q 4.

(2X7=14)

- a) Explain the different types of databases with examples? Give examples of databases for nucleic acids and proteins
- b) Explain different applications of bioinformatics in Microbiology

c) Write brief notes on: Major milestones in Bioinformatics, Bioinformatics in drug designing.

Q 5. (2X7=14)

- a) Compare: Local alignment vs Global alignment, BLOSSUM vs PAM
- b) What are the different tools to determine the phylogeny? Describe the algorithms used, advantages and disadvantages of all
- c) Differentiate between: (1) Similarity, Identity and homology (ii) Orthologues and paralogues

Term End Examinations January 2023

Programme : M.Sc. Microbiology

Semester : Third Session: 2022-23

Course Title : Applied Microbiology Max. Time: 3 Hours

Course Code : SIAS MB 1 3 03 GEC 4004 Max.Marks : 70

Instructions: 1. Question no. 1 has seven parts and students are required to answer any four. Each part carries three and half Marks.

2. Question no. 2 to 5 have three parts and student are required to answer any two parts of each question. Each part carries seven marks.

Q 1. Discuss briefly

(4X3.5=14)

- a) Food fermentations
- b) Dairy starter cultures
- c) Physical methods of sterilization
- d) Pure culture techniques
- e) Nosocomial infection
- f) ELISA
- g) BNF and its role in N cycle

Q 2. (2X7=14)

- a) Describe the growth phases of a bacterial culture. Explain each phase of growth
- b) Describe the structure of a bacterial cell with well labelled diagram
- c) Discuss the contribution of Louis Pasteur and Robert Koch in the field of Microbiology

Q3. (2X7=14)

- a) What is the resident, transient and carrier state in normal flora? Name the species of natural flora present on skin, nasopharynx, small intestine and vagina.
- b) What is an antibiotic? Describe the meaning of bacteriostatic and bacteriocidal. Write the mechanism of action for penicillin, tetracyclin, chloramphenicol, erythromycin.
- c) Give two examples of common live vaccine and give two examples of killed vaccine. What is active immunity and what is passive immunity? Write a short note on Radio immuno assay.

Q 4. (2X7=14)

a) Define biogas. Discuss about 4 different stages during biogas production including the microorganisms involved.

- b) Discuss different types of microbial interaction with examples.
 - c) Elaborate the role of microorganisms in biodegradation of cellulose, starch and lignin.

Q 5. (2X7=14)

- a) Discuss microbial production (fermentation) of one each of dairy and non-dairy fermented foods.
- b) Discuss industrial production of any one primary metabolite.
- c) Define probiotics, prebiotics and symbiotics. Discuss health benefits of probiotics in detail.